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ABSTRACT Development of a successful blood-stage vaccine against Plasmodium
falciparum malaria remains a high priority. Immune-epidemiological studies are ef-
fective tools for the identification of antigenic targets of naturally acquired immunity
(NAI) against malaria. However, differences in study design and methodology may
compromise interstudy comparisons. Here, we assessed antibody responses against
intact merozoites and a panel of 24 recombinant merozoite antigens in longitudinal
cohort studies of Ghanaian (n � 115) and Indian (n � 121) populations using the
same reagents and statistical methods. Anti-merozoite antibodies were associated
with NAI in both the Indian (hazard ratio [HR] � 0.41, P � 0.020) and the Ghanaian
(HR � 0.17, P � 0.001) participants. Of the 24 antigen-specific antibodies quantified,
12 and 8 were found to be protective in India and Ghana, respectively. Using least
absolute shrinkage and selection operator (LASSO) regression, a powerful variable
subselection technique, we identified subsets of four (MSP6, MSP3.7, MSPDBL2, and
Pf12) and five (cMSP33D7, MSP3.3, MSPDBL1, GLURP-R2, and RALP-1) antigens that
explained NAI better than the individual antibodies in India (HR � 0.18, P � 0.001)
and Ghana (HR � 0.31, P � 0.001), respectively. IgG1 and/or IgG3 subclasses against
five antigens from these subsets were associated with protection. Through this com-
parative study, maintaining uniformity of reagents and methodology, we demon-
strate that NAI across diverse geographic regions may result from antibodies to mul-
tiple antigenic targets that constitute the peripheral merozoite surface protein
complexes.

KEYWORDS malaria, immunity, merozoite

Plasmodium falciparum malaria remains a major public health problem particularly in
Africa and India, where more than 95% of all malaria cases worldwide were

reported in 2017 (1).
Naturally acquired immunity (NAI) mediated by immunoglobulin G (IgG) antibodies

against malaria develops over a long period with repeated infections (2–5). Antigenic
targets of NAI appear to be conserved across geographically diverse regions since
passively transferred IgG from immune West African adults to Thai malaria patients
cleared parasitemia and alleviated symptoms (6). However, the mechanisms involved in
NAI and the identity of the targets of protective IgG have not been fully elucidated.
Since merozoites are exposed to circulating antibodies, merozoite surface proteins
(MSPs) are likely targets of NAI (7–9). While immune epidemiological studies have been
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effective in identifying potential targets of protective antibodies, such studies have also
produced conflicting data, with antibodies against the same antigen being protective
in some studies but not in others (reviewed in reference 10). Possible reasons for such
discrepancies may include (i) study design, (ii) statistical methodology, (iii) endpoint
definition, (iv) antibody subclass profiles, (v) malaria transmission intensity, and (vi)
ethnicity.

Here, we analyzed the patterns of NAI against P. falciparum malaria in two geo-
graphically diverse cohorts, one from India and the other from Ghana, using the same
methodology, assay setup, endpoint definition, and statistical models. IgG antibody
responses against whole merozoites and a panel of 24 recombinant merozoite proteins
produced in a Lactococcus lactis expression system (11) were quantified. We evaluated
their protective effect against febrile malaria to identify targets of NAI that transcend
different epidemiological regions.

RESULTS
Study design and demographics. While anti-merozoite immunity is well docu-

mented in African populations, it is less described in India. Here, we comparatively
assessed samples and clinical data from two longitudinal cohort surveys (LCS) con-
ducted in Ghana and India (12, 13). For both study sites, malaria transmission is
perennial but peaks during and after the rainy season and was relatively higher in
Ghana (the parasite prevalence during LCS was 14.45% in Ghana and 8.36% in India).
The peak incidence of febrile malaria occurred in younger children, up to 6 years of age
(68.5% of all cases) in Ghana, whereas in India, peak incidence was up to 10 years of age
(54.2% of all cases). The mean age of Indian participants (27.5 � 18.8) was significantly
higher than those in Ghana (5.7 � 2.9; P � 0.001). At baseline (BL), blood samples were
drawn from 386 Indian and 669 Ghanaian individuals, who were subsequently moni-
tored for malaria case detection for 13 and 9 months, respectively. This study presents
data for 121 Indians (31.3% of those sampled at BL) and 115 Ghanaians (17.2% of those
sampled at BL) who were considered definitely exposed based on microscopically
detected P. falciparum infection at any point during the respective study periods (see
Fig. S1 in the supplemental material). Of these, 48 (39.6%) and 73 (63.5%) in India and
Ghana, respectively, encountered at least one febrile malaria episode during the
follow-up, and were termed susceptible to febrile malaria (Table 1).

Relationship between IgG antibodies against merozoites, parasitemia, and
febrile malaria. To minimize the impact of methodological differences, anti-merozoite
IgG was measured by flow cytometry-based immunofluorescence assay (FC-IFA) in
samples from both cohorts using a common batch of freshly purified merozoites.
Opsonizing IgG was significantly higher in individuals with asymptomatic P. falciparum
infection than in those without infection at BL in both the Indian (P � 0.018) and the

TABLE 1 Demographics of study participants and febrile malaria status during follow-up

Demographic parameter Subgroup No. (%) in India Subgroup No. (%) in Ghana

Total no. 121 115
Age group �10 yr 48 (39.7) �5 yr 56 (48.7)

11–15 yr 21 (17.4) �6 yr 59 (51.3)
�16 yr 52 (43.0)

Sex Female 59 (48.8) 59 (51.3)
Male 62 (51.2) 56 (48.7)

Bed net use Yes 14 (11.6) 41 (35.7)
No 107 (88.4) 74 (64.3)

Follow-up status Protected 73 (60.3) 42 (36.5)
Baseline status

Parasitemic 62 23
Nonparasitemic 11 19

Susceptible 48 (39.7) 73 (63.5)
Baseline status

Parasitemic 16 6
Nonparasitemic 32 67
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Ghanaian (P � 0.001) cohorts, suggesting a boosting effect of concurrent infections on
antibody levels (Fig. 1A). The levels of antibodies were also higher in individuals who
did not experience febrile malaria during follow-up (protected group) than in those
who did (susceptible group) (P � 0.008 [India] and P � 0.001 [Ghana]) (Fig. 1B).
Participants were categorized into low, medium, or high anti-merozoite IgG responders
and assessed for the risk of febrile malaria in Cox regression models accounting for age.
It was found that responders in the high IgG group had a significantly higher proba-
bility of remaining free of febrile malaria than those in the low IgG group in India
(hazard ratio [HR] � 0.41; 95% confidence interval [CI] � 0.19 to 0.87; P � 0.020), as well
as in Ghana (HR � 0.17; 95% CI � 0.08 to 0.34; P � 0.001; visualized as Kaplan-Meier
plots in Fig. 1C and D). Collectively, these findings are consistent with the notion that
anti-merozoite immunity develops globally and correlates positively with age and
parasite exposure.

Association between antigen-specific antibodies and protection from febrile
malaria. In an attempt to identify the molecular targets of NAI against merozoites, the
levels of IgG antibodies against a panel of 24 recombinant merozoite antigens were
measured by a multiplex assay (14) in both cohorts. Regarding the levels of merozoite
IgG antibodies, both cohorts showed higher median levels of specific IgG in individuals
who were (i) protected versus susceptible and (ii) parasitemic versus nonparasitemic at
baseline (Fig. S2). Regardless of febrile malaria status and baseline parasitemia, the IgG
antibody levels were generally higher in samples from Ghana than in those from India.

FIG 1 Antibodies against merozoites are associated with protection against febrile malaria. Fluorescence intensities were determined by FC-IFA. Antibody
levels are shown stratified by infection at baseline (A) or by febrile malaria status during follow-up (B). The data are presented as box-and whisker plots
showing the 5th to 95th percentiles. P values were determined by Mann-Whitney test. Asterisks represent P values (*, P � 0.05; **, P � 0.01; ***, P � 0.001).
(C and D) Antibody levels were stratified into three groups based on tertiles. Kaplan-Meier plots show the probability of remaining febrile malaria-free during
the study period for individuals with low (red), medium (green), and high (blue) antibody levels against merozoites in India (C) and Ghana (D).
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The probability of developing febrile malaria during follow-up for each antibody level
(categorized as low, medium, or high) was assessed by Cox regression analyses ad-
justed for age and the FC-IFA readouts for anti-merozoite IgG. Using the low IgG
category as a reference for the respective antigens, we found that high IgG levels to 12
and 8 antigens were inversely related to the probability of developing febrile malaria
in India and Ghana, respectively (Table 2). Of these, IgG responses to GLURP-R2, PfRh2a,
and cMSP33D7 were common to both cohorts. After applying the Bonferroni correction
for multiple testing, only one association remained significant in each cohort: GLURP-R2
in India and RON4 in Ghana.

Breadth of antibodies and protection from febrile malaria. There is evidence
that protection from febrile malaria most likely results from multiple antibody speci-
ficities (15–17). To evaluate associations between breadth of antigen-specific IgG and
malaria immunity, we generated a breadth score (a linear variable) for each participant
based on the magnitude of all 24 antibody specificities. As expected, the breadth score
increased with age in both India and Ghana (P � 0.001; Fig. 2A and B). When individuals
were stratified by febrile malaria status during follow-up, the group of protected
individuals displayed higher breadth scores than susceptible individuals (P � 0.001; Fig.
2C and D). The breadth score was also significantly higher in individuals who were
parasitemic at BL than nonparasitemic individuals both in India (P � 0.004) and in
Ghana (P � 0.001).

TABLE 2 Antigens associated with protection from febrile malaria in Indian and Ghanaian
cohortsa

Antigen

India Ghana

HR (95% CI) P Adj P HR (95% CI) P Adj P

Surface GPI anchored
MSP119K 0.21 (0.08–0.57) 0.002 0.052 0.81 (0.45–1.46) 0.488 1.000
MSP23D7 0.59 (0.26–1.33) 0.207 1.000 0.44 (0.23–0.84) 0.013 0.308
MSP2FC27 0.45 (0.18–1.15) 0.094 1.000 0.45 (0.25–0.81) 0.008 0.196
Pf12 0.33 (0.13–0.79) 0.013 0.322 0.56 (0.30–1.04) 0.066 1.000
Pf38 0.46 (0.19–1.09) 0.078 1.000 0.75 (0.42–1.37) 0.354 1.000

Peripherally associated
GLURP-R0 0.30 (0.12–0.76) 0.012 0.276 0.82 (0.45–1.51) 0.528 1.000
GLURP-R2 0.21 (0.08–0.55) 0.002 0.037 0.41 (0.21–0.80) 0.009 0.212
MSP3.3 0.30 (0.12–0.77) 0.013 0.300 0.86 (0.47–1.58) 0.621 1.000
MSP3.7 0.28 (0.11–0.71) 0.007 0.172 0.72 (0.38–1.35) 0.308 1.000
cMSP33D7 0.27 (0.10–0.73) 0.010 0.231 0.51 (0.28–0.95) 0.035 0.837
nMSP33D7 0.71 (0.29–1.71) 0.443 1.000 0.56 (0.28–1.13) 0.104 1.000
nMSP3K1 0.53 (0.22–1.26) 0.151 1.000 0.68 (0.36–1.27) 0.224 1.000
MSP6 0.30 (0.12–0.77) 0.013 0.305 0.57 (0.31–1.04) 0.068 1.000
MSPDBL1 0.81 (0.33–2.02) 0.656 1.000 0.43 (0.22–0.85) 0.015 0.361
MSPDBL1 (Leucine) 0.49 (0.20–1.18) 0.110 1.000 0.74 (0.42–1.31) 0.304 1.000
MSPDBL2 0.43 (0.18–1.02) 0.056 1.000 0.42 (0.21–0.83) 0.012 0.291
SERA5 0.63 (0.24–1.60) 0.329 1.000 1.06 (0.58–1.92) 0.856 1.000

Rhoptry
PfRh2a 0.26 (0.10–0.71) 0.008 0.201 0.51 (0.28–0.93) 0.028 0.675
PfRh2b 0.39 (0.16–0.97) 0.043 1.000 0.68 (0.35–1.33) 0.259 1.000
PfRh2-2030 0.59 (0.22–1.58) 0.294 1.000 0.81 (0.43–1.54) 0.516 1.000
RALP-1 0.41 (0.16–1.08) 0.070 1.000 0.82 (0.45–1.49) 0.513 1.000
RAMA 0.23 (0.08–0.68) 0.008 0.185 0.54 (0.28–1.07) 0.079 1.000
RON4 0.47 (0.18–1.24) 0.127 1.000 0.31 (0.15–0.64) 0.001 0.036

Microneme
EBA140RIII-V 0.34 (0.13–0.87) 0.025 0.607 0.72 (0.40–1.29) 0.266 1.000

aIgG levels against a panel of merozoite antigens were analyzed for their protective effect against febrile
malaria. A Cox proportional-hazard model comparing high and low responders (divided into tertiles) was
used to determine the hazard ratios (HR), 95% confidence intervals (95% CI), unadjusted P values (P), and
Bonferroni adjusted P values (Adj P) for each antibody response. Age group and merozoite IFA were
included in the model as confounders for exposure. Antigens are grouped according to their subcellular
localization. Significant P values (�0.05) are indicated in boldface.
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Next, we used the least absolute shrinkage and selection operator (LASSO) regres-
sion and 10-fold cross-validation analysis method (18) to select combinations of
antibody specificities that could explain protective immunity better than any individual
response. By using this approach, IgG responses against antigen subsets identified for
the Indian and Ghanaian cohorts consist of those against four (MSP6, MSP3.7, MSPDBL2,
and Pf12) and five (cMSP33D7, MSP3.3, MSPDBL1 [Leucine], GLURP-R2, and RALP-1)
antigens, respectively. Cox proportional-hazard models used to determine estimates of
protection confirmed that these combinations of four and five antibody specificities
were strongly associated with protection in India (HR � 0.18, P � 0.001) and Ghana
(HR � 0.31, P � 0.001), respectively (Fig. 2E and F). The protective associations of
antibody reactivities against the combination of antigens identified in each cohort were
stronger than the combination of all antigens (HR � 0.30 and 0.61 in India and Ghana,
respectively) or any of the individual antibody reactivities detected in the respective
cohort. Importantly, the antigen combination identified in the Ghanaian cohort was
also a strong predictor of protection from febrile malaria in the Indian cohort
(HR � 0.23) and vice versa (HR � 0.37).

Profiling IgG subclasses against each antigen subset in the respective popu-
lations. Antibodies of the cytophilic subclasses (19) and in particular IgG3 (14, 20–23)
are associated with immunity against blood-stage P. falciparum. It was therefore of
interest to determine the subclass profile of naturally acquired IgG against these two

FIG 2 Breadth of antibody responses in relation to age and febrile malaria. Mean breadth scores in India (A and C) and Ghana (B and D) stratified by age (A
and B) or febrile malaria status during follow-up (C and D). Error bars represent 95% confidence intervals. P values were determined by Kruskal-Wallis test or
Mann-Whitney test. The Cox proportional-hazard model comparing high and low responders was used to calculate hazard ratios, 95% confidence intervals, and
P values for each antibody response or combination in India (E) and Ghana (F). The model was adjusted for age and antibody levels against whole merozoites.
The horizontal dashed line indicates no association with protection (HR � 1). The vertical dotted line divides the subsets of antigens and combinations identified
in India and Ghana (left and right, respectively). Asterisks represent P values (*, P � 0.05; **, P � 0.01; ***, P � 0.001).
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antigen subsets. It appears that there is a predominance of cytophilic antibodies
against both antigen subsets in both cohorts (Fig. 3A and B). Specific IgG subclasses
were categorized as low, medium, or high based on the respective mean fluorescence
intensities (MFIs). For the antigen subset identified in India, high levels of IgG subclasses
against MSP6 (HRIgG1 � 0.25 and HRIgG3 � 0.37), MSP3.7 (HRIgG1 � 0.36 and HRIgG3 �

0.23), and Pf12 (HRIgG3 � 0.43) in the Indian cohort (Fig. 3C) and MSP3.7 (HRIgG1 � 0.47)
and MSPDBL2 (HRIgG1 � 0.32 and HRIgG3 � 0.42) in the Ghanaian cohort (Fig. 3D) were
significantly associated with a higher probability of remaining malaria-free during the
follow-up period. For the antigen subset identified in Ghana, high levels of IgG
subclasses against GLURP-R2 (HRIgG1 � 0.36, HRIgG2 � 0.36, and HRIgG3 � 0.49) and
cMSP33D7 (HRIgG1 � 0.43 and HRIgG2 � 0.51) in the Ghanaian cohort (Fig. 3D) and
against cMSP33D7 (HRIgG1 � 0.36, HRIgG2 � 0.20, HRIgG3 � 0.28), MSP3.3 (HRIgG3 � 0.25),
and RALP-1 (HRIgG1 � 0.25) in the Indian cohort (Fig. 3C) were significantly associated
with protection against febrile malaria.

DISCUSSION

Identification of molecular targets of NAI has been hampered not only by an
incomplete understanding of the underlying mechanisms but also by conflicting

FIG 3 IgG subclass responses against selected antigens and their association with protection. Bars represent the median of log10-transformed fluorescence
intensities (MFIs) values of immunoglobulin G (IgG) subclass (IgG1, IgG2, and IgG3) in samples from India (A) and Ghana (B), respectively. The vertical dotted
line divides the subsets of antigens identified in India (left) and Ghana (right). (C and D) Associations of IgG subclass responses with protection from febrile
malaria in Indian and Ghanaian cohorts, respectively. Hazard ratios, 95% confidence intervals, and P values were calculated using a Cox proportional-hazard
model comparing high and low responders. The models were adjusted for age and antibody levels against whole merozoites. The horizontal dashed line
indicates no association with protection (HR � 1). Asterisks represent P values (*, P � 0.05; **, P � 0.01; ***, P � 0.001).
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evidence from several immune epidemiological studies involving the use of different
isoforms of same antigens, variations in the detection of antibody reactivities, and
differences adopted in data analysis. Using harmonious experimental methodology and
identical data analysis plan, we have demonstrated that antibodies against whole
merozoite preparation, and certain combinations of recombinant antigens (from a
panel of 24) in particular, are involved in NAI against malaria in geographically diverse
populations from Africa and India.

First, using a common batch of purified merozoites, we found that high levels of
merozoite IgG were associated with a reduced probability of febrile malaria in both
cohorts from India and Ghana. Second, we assessed specific IgG reactivities toward
a panel of 24 recombinant merozoite antigens using common reagents. These
recombinant antigens were subdomains from different merozoite proteins selected
from different subcellular compartments, most of which have been identified to
play mechanistic roles in erythrocyte invasion and have been identified as targets
of protective immune responses in various studies (14, 15, 24–26). In both study
cohorts, antibody reactivity to whole merozoites, as well as to the majority of the
recombinant antigens, individually and in combination, increased with age and was
higher in participants who were parasitemic at baseline, thus reinforcing the notion
that an active infection boosts preexisting malarial antibodies. In general, the levels
of specific IgG antibodies were higher in the Ghanaian than in the Indian cohort,
most likely due to higher malaria transmission in Ghana. Next, we prospectively
assessed antibody associations with protective immunity and found that antibodies
against 12 and 8 antigens were individually associated with protection against
febrile malaria in India and Ghana, respectively. To identify those antibody speci-
ficities which are most strongly associated with protection from febrile malaria, we
used the LASSO regression and 10-fold cross-validation analysis method, which aids
in selecting subsets of relevant predictors and can be applied to Cox proportional-
hazard models. LASSO has been successfully applied to create predictive models in
multiple human diseases (27–31). By using this approach, we identified two antigen
subsets—(i) MSP6, MSP3.7, MSPDBL2, and Pf12 and (ii) cMSP33D7, MSP3.3, MSPDBL1
(Leucine), GLURP-R2, and RALP-1—that explained protective immunity better than
any individual antibody reactivity in the Indian and Ghanaian cohorts, respectively.
Our data thus reinforce previous findings that the cumulative responses to combi-
nations of antigens are a better predictor of protection than responses to their
single-antigen components (25, 32), and these combinations may vary among
populations. It is not fully understood why different subsets of antigens were more
protective in the two cohorts; however, further planned studies on both parasite
genetic variability and host major histocompatibility complex (MHC) class II restric-
tions in the cohorts may help explain some of these observations.

From the Indian subset of antigens, IgG3 subclass antibody levels against Pf12,
MSP3.7, and MSP6 were also associated with protection, whereas in a previous study in
the same cohort, MSP6-specific IgG3 antibodies were found to be nonprotective (14).
This is due to variation in the data analysis plan. Previously, protective association of
each antigen was assessed by multivariate logistic regression analysis (fitting IgG3 data
as a linear covariate) (14), while in the present study IgG3 data (categorized into tertiles)
were assessed by Cox proportional-hazard models. In an earlier study, two of the
antigens (GLURP-R2 and cMSP33D7) from this Ghanaian subset were also found to
correlate with protective immunity and opsonic phagocytosis of merozoite activity
when these Ghanaian IgG preparations were assessed in an antigen-coated bead-based
phagocytosis assay (26).

Taken together, these observations suggest that multiple antibody specificities are
involved in NAI and that the exact combination of such antibodies differs from one
region to another, possibly due to differences in population-specific MHC class II
restrictions and circulating parasite strains (antigenic polymorphism). Interestingly,
seven of the antigens identified as targets of NAI in our study, both in the Indian and
the Ghanaian cohorts, are peripherally associated MSPs. Of these, six belong to the
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MSP3 family of proteins (MSP6, MSP3.7, and MSPDBL2 from the Indian cohort and
cMSP33D7, MSP3.3, and MSPDBL1 [Leucine] from the Ghanaian cohort), and one is
GLURP-R2, which was recently characterized as another merozoite surface protein (5).
A network of cross-reactivity has been reported among the conserved domains of MSP3
family of proteins, where antibodies elicited against any member of this family (de-
pending on the host MHC class II restrictions) could exert an antiparasite effect through
reactivity against other members of the family (33). In this study, we used unique
domains from members of MSP3-family of proteins, which do not share appreciable
sequence similarities. However, it is intriguing that study participants could have
developed antibody responses toward other domains of the MSP3 family of proteins,
including those against the conserved cross-reactive domains. Indeed, in the present
study we detected IgG responses against cMSP33D7 in both the Indian and the
Ghanaian cohorts, which were found to be associated with protection against febrile
malaria. IgG responses to conserved cross-reactive domains of other MSP3 family of
proteins remains to be tested. Curiously, one rhoptry-neck protein Pf12 and RALP-1
were identified in the Indian and Ghanaian cohorts, respectively. While Pf12 is a
GPI-anchored protein (34), RALP-1 is associated through coiled-coil domains with an
unknown protein and colocalizes with RON4, another rhoptry-neck protein (35).
Whereas RON4 was the strongest predictor of protection in the Ghanaian cohort, this
was not the case in the Indian cohort.

Most of the NAI targets identified in the present study have been previously
described as targets of functional antibodies with antiparasite effects, either through
neutralization of the merozoite invasion in erythrocytes or in cooperation with mono-
nuclear cells through antibody-dependent cellular inhibition and opsonic phagocytosis
(5, 26, 36–39). It should be noted that our experimental setup has the inherent
limitation of not completely reflecting the in vivo situation since we quantified antibody
levels with a multiplex assay, using recombinant proteins, rather than assessing
antigen-specific antibodies in functional assays, which are likely to be better correlates
of protective immunity. Though IgM antibodies have been relatively understudied, they
have been found to inhibit merozoite invasion of erythrocytes in a complement-
dependent manner. Along with IgG, their levels have also been significantly associated
with protective immunity against malaria and therefore warrant further investigation to
validate their role in malaria immunity (40).

In conclusion, to the best of our knowledge, this is the first report about the
identification of targets of NAI using comparative immune epidemiological studies
in geographically diverse cohorts from Africa and India. Findings from this study
reinforce the observations from earlier studies that anti-merozoite IgG is important
in NAI against febrile malaria; notwithstanding, the methodological synchrony in
such immune epidemiological studies, involving either whole parasites or individual
proteins, is critical for consistent results. Furthermore, using a well-suited statistical
tool for the identification of antigenic targets, we found that cumulative antibody
responses to two distinct combinations of peripheral merozoite surface antigens
were strongly associated with protective immunity in both Indian and Ghanaian
study populations.

MATERIALS AND METHODS
Ethics statement. The studies were approved by the Institutional Review Board of Noguchi Memorial

Institute for Medical Research of the University of Ghana, Accra, Ghana, and by the Institutional Ethics
Committee of the National Institute of Malaria Research, Indian Council of Medical Research, New Delhi,
India. Written informed consent was given by the study participants or their guardians before enrollment
in the study.

Study areas, populations, and design. The Indian study was conducted in Dumargarhi in the state
of Jharkhand and has been described in detail previously (13). A total of 945 individuals (ages 1 to 82
years) were enrolled in the study, which lasted from May 2014 to September 2016. It included four
cross-sectional surveys in which subsets of the population were sampled, and a 13-month longitudinal
cohort survey (LCS) between April 2015 and April 2016. During this period, trained field workers visited
the village every fortnight for active surveillance, which included recording the temperature for all febrile
individuals.
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The African study was conducted in Asutsuare, Damgbe, West District, in Ghana, as previously
described in detail (12). In total, 798 children under 12 years were enrolled in May 2008. Venous blood
was obtained at enrollment and children were followed up actively and passively for malaria detection
in a 42-week LCS.

At both sites, febrile malaria was defined as any P. falciparum parasitemia confirmed by microscopy
of stained thick and thin blood smears plus reported fever or axillary temperature �37.5°C at the time
of the visit. Individuals who suffered at least one case of febrile malaria during follow-up were considered
susceptible, while those who did not experience any episodes of febrile malaria despite having parasites
at BL were considered protected.

Parasite culture and merozoite isolation. P. falciparum strain NF54 was cultured in O� human
erythrocytes at a parasitemia between 1 and 5% with a 3% hematocrit. Parasite growth medium
consisted of RPMI 1640 with 25 mM HEPES, 2 mM L-glutamine, 25 �g/ml gentamicin, 0.5% AlbuMAX,
and 2% heat-inactivated serum. Parasites were kept at 37°C in an atmosphere containing 5% O2, 5%
CO2, and 90% N2. Parasitemia and developmental stage were monitored by preparing thin blood
smears. Smears were fixed with methanol, stained with 10% Giemsa for 10 min, and observed by
light microscopy. Parasites were synchronized by treatment with 5% sorbitol for 10 min. Early
schizonts were harvested with a magnetic separation column and then cultured in parasite growth
medium. Mature schizonts were filtered through a 1.2-�m-pore filter, and hemozoin was removed
by passing through an LS MACS column three times.

Flow cytometry-based immunofluorescence assay. Flow cytometry-based immunofluorescence
assay (FC-IFA) was performed as previously described (14). In brief, purified merozoites (4 � 105 per well)
were added to a 96-well U-bottom plate. Test samples were added, followed by incubation for 1 h with
shaking. Plates were washed twice with wash buffer (0.5% bovine serum albumin in phosphate-buffered
saline [PBS]). Then, 100 �l of phycoerythrin-conjugated sheep anti-human IgG antibodies diluted 1:1,000
was added. After incubation for 1 h and two washes, the merozoites were resuspended in 200 �l of wash
buffer. Plates were read in a Beckman Coulter cytometer (5,000 events). The results were analyzed using
Kaluza analysis software.

Multiplex assay for antibody measurement. A panel of 24 P. falciparum recombinant antigens (41)
was covalently coupled to internally labeled microspheres according to the manufacturer’s instructions
(Luminex). Antibody quantification has been described in detail previously (41). In brief, a mix containing
approximately 1,250 beads of each of the antigen-coupled bead regions was added to each well of a
prewetted 96-well filter microtiter plate. The plates were then washed three times with assay buffer E
(ABE; 0.1% bovine serum albumin, 0.05% Tween 20, and 0.05% sodium azide in PBS [pH 7.4]). Test
samples were added at 100 �l per well and incubated for 2 h with shaking. After three washes with ABE,
100 �l of phycoerythrin-labeled goat anti-human IgG antibodies (Jackson Immuno Research) was added
at a dilution of 1:3,500. The plates were then incubated for 1 h with shaking and washed three times with
ABE. After three washes and resuspension of the samples in 100 �l of ABE, the plates were read in a
Luminex 200 (Bio-Rad Laboratories, Inc.).

Data analysis. The Mann-Whitney test was used to evaluate differences between two groups. For
comparisons between more than two groups, the Kruskal-Wallis test and Dunn’s multiple-comparison
test were used. P values of less than 0.05 were considered significant. The Cox proportional-hazard model
was used to determine the association of antibody levels and breadth scores with protection. The levels
and scores were classified into three groups (low, medium, and high) based on tertiles with models
comparing the low and high groups. Age and anti-merozoite IgG levels were included in the models as
confounders. Age was stratified into three levels in India (�10, 11 to 15, and �16 years) and into two
levels in Ghana (�5 and �6 years), as previously reported (5, 14, 39, 42). In antigen-specific total IgG,
subclasses or breadth score association analyses, we adjusted for age and anti-merozoite IgG levels as
confounders because both of these variables are (i) a proxy for parasite exposure, (ii) correlated with
malaria disease outcome, and (iii) correlated with each other. In the past, we (14, 26) and others (32) have
used a similar approach in antibody association studies. As published previously, bed net usage and
gender were not identified as confounders (5, 14).

To generate the breadth scores, antigen-specific antibody levels were first normalized for each cohort
separately using the following formula:

z �
x � x�

�
,

where x is the observation, x� is the mean, and � is the standard deviation of the samples. Each
individual’s z values for all 24 antigens were averaged to calculate the breadth score.

The LASSO regression model was applied to select antibody combinations strongly associated with
protection. Normalized antigen-specific IgG levels were included in the model. Variables with little
predictive value were reduced to zero, which reduced the number of variables, resulting in a simpler final
model (Fig. S3A and B). The appropriate lambda value was selected using 10-fold cross-validation and
optimizing for low deviance (Fig. S3C and D). New breadth scores were calculated as described previously
for the antibody combinations selected with the LASSO procedure.

Statistical analysis was performed using Prism 8 (GraphPad Software, Inc.) and R version 3.5.1 (43).
The packages survival (44, 45) and glmnet (46) were used for modeling and cross-validation.
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